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Abstract: The voluminous magmatism associated with Large Igneous Provinces (LIP) 11 

is commonly correlated to upwelling plumes from the Mantle Transition Zone or the Core-12 

Mantle Boundary (CMB). Here we analyse seismic tomographic data from the Emeishan 13 

LIP in southwestern China. Our results reveal vestiges of delaminated crustal and (or) 14 

lithospheric material in the cental part of the study area, and upwelling mantle in the 15 

southern part. Our results do not provide any conclusive evidence for upwelling mantle 16 

plume rooted in the CMB beneath the Emeishan LIP. We therefore suggest that the 17 

magmatism and the Emeishan LIP formation might be connected with the melting of 18 

delaminated lower crustal and (or) lithospheric components and associated plume-like 19 

upwelling from the mantle transition zone.  20 
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  24 

1. Introduction 25 

 26 

The large-scale and transient magmatic events on the globe at different times during 27 

Earth history are closely linked to mantle dynamics (Coffin and Eldholm, 2001; Ernst and 28 

Buchan, 2001). The punctuated but intense magmatic activities over the globe has 29 

generated several Large Igneous Provinces (LIPs) in different regions (Uenzelmann-30 

Neben, 2013; Pirajno and Hoatson, 2012). Mantle plumes which are upwellings of hot 31 

material from deeper parts of the Earth (Arndt, 2000) have been invoked to explain the 32 

link between LIP and modern volcanoes. LIPs are characterized by large lava 33 

outpourings, such as those found in Siberia, India, and Emeishan, which also have 34 

important implications in surface environmental changes including mass extinctions 35 

(Buiter, 2014; Wignall, 2011).  36 

 37 

Mantle upwellings received attention when Wilson (1963) suggested that the 38 

Hawaiian Islands were produced when oceanic lithosphere moved over a stationary ‘hot 39 

spot’ in the mantle, following which the role of plumes and their relation to mantle 40 

convection was further realized (Morgan, 1971). It is now widely recognized that 41 

upwelling mantle plumes generate many LIPs and numerous small chains of seamounts 42 

(Griffiths and Campbell, 1990; Hofmann, 1997; Maruyama et al., 2007; Safonova et al., 43 

2009; White, 2010; Dobretsov, 2011, Safonova and Santosh, 2014). When upwelling 44 

mantle plume impinges on continental or oceanic lithosphere, large-scale eruption and 45 

Solid Earth Discuss., doi:10.5194/se-2017-17, 2017
Manuscript under review for journal Solid Earth
Discussion started: 22 March 2017
c© Author(s) 2017. CC-BY 3.0 License.



P a g e  | 3 

 

3 
 

intrusion of mafic and ultramafic melts occur generating LIPs (Coffin and Eldhom, 1992, 46 

Pirajno, 2007; Sheth, 2007b; Bryan and Ernst, 2008; Shellnutt and Iizuka, 2012).  47 

 48 

The basaltic rocks of LIPs have been investigated to understand the source, nature 49 

and tectonic setting of LIPs formation (Smith and Asimow, 2005; Herzberg and Asimow, 50 

2008; Shellnutt and Iizuka, 2012). The Emeishan basalts (ca. 257 - 262 Ma) in southwest 51 

China are exposed over an area of 0.25-0.3 million square kilometers in the Sichuan, 52 

Yunnan and Guizhou provinces comprising a total volume of about 0.25 million km3 53 

(Huang and Opdyke, 1998), with thickness of the basaltic flow ranging from one to two 54 

hundred meters in the eastern part to more than five kilometers in the west (Ali et al., 55 

2010; Deng et al., 2010). The Emeishan LIP hosts some of the world-class Fe–Ti–V 56 

oxide and Ni–Cu sulfide deposits (Pang et al., 2013; Zhou et al., 2013). The region has 57 

been divided into three zones (inner, intermediate and outer) (Fig. 1) based on 58 

biostratigraphic, sedimentological and geochemical characteristics (Xu et al., 2001; Deng 59 

et al., 2010).  60 

 61 

Previous studies suggested the Emeishan flood basalts with mantle plume 62 

impingement at the base of the lithosphere causing large-scale regional up-doming prior 63 

to volcanism (Shellnutt et al., 2012; Shellnutt, 2013, 2014; Li et al., 2002; Gao et al., 64 

1999; Liu et al., 2008) with a short eruption period of less than 1 Ma (Song et al. 2004). 65 

However, the primary evidence for upwelling mantle plume has remained elusive. Some 66 

workers (e.g. Ukstins Peate and Bryan, 2008) have also challenged the concept of 67 
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upwelling mantle plume leading to LIP formation in the Emeishan area. It has also been 68 

argued that that submarine volcanism took place during emplacement of the Emeishan 69 

LIP and that some lava flows close to the centre of the LIP were erupted in a submarine 70 

setting (Ukstins Peate and Bryan, 2008; Ali et al., 2010). This model considers that the 71 

products of initial eruption were extruded at or around sea level, and that the moderately 72 

positive topography is a reflection of the rapid accumulation of the volcanic pile (Peate 73 

and Bryan, 2008). Therefore, in order to further understand the Emeishan LIP formation, 74 

it is necessary to investigate the deep structure or mantle dynamics beneath the 75 

Eemishan LIP area. 76 

 77 

In the past two decades, seismic tomography has increasingly found application 78 

as a potential tool to explore the heterogeneous structure of the Earth’s interior, which in 79 

turn is important to gain insights into mantle dynamics and crust-mantle interaction 80 

processes. Several seismic tomographic studies have been carried out on the Emeishan 81 

LIP and surrounding regions, including 2.5 dimensional tomography of the uppermost 82 

mantle (Lü et al., 2014), ambient noise Love and Rayleigh wave tomography (Li et al., 83 

2010, 2009), teleseismic P-wave tomography (Yang et al., 2014; Huang et al., 2015; Bai 84 

et al., 2011), local earthquake tomography (Huang et al., 2009; Xu et al., 2012), 85 

interstation Pg and Sg differential traveltime tomography (Li et al., 2014) and Pn 86 

anisotropic tomography (Lei et al., 2014). Generally, most of these studies targeted the 87 

crustal and upper mantle velocity structure in this area.  88 

 89 
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In this study, we carried out a systematic tomographic analyses with a view to 90 

construct the velocity structure or mantle dynamics of the upper mantle beneath the 91 

Emeishan LIP area. The results provide a vivid image of the upwelling mantle and the 92 

lower crustal and (or) lithospheric delamination. Our results further demonstrate the 93 

dynamic relationship between delamination and upwelling mantle. 94 

 95 

2. Data and method 96 

 97 

 98 

The basic principle for teleseismic tomography assumes that the relative travel-time 99 

residuals resulted from the heterogeneity in the model space (e.g. Yang et al., 2014； 100 

Zhao et al., 1992). The location of the seismic ray crosses through the boundary of the 101 

study region was determined by a 1D velocity model and theoretical travel time and 102 

seismic ray paths are obtained by the fast raytracing technique (Zhao et al., 1992, Yang 103 

et al., 2014). 3D grids are employed to express the velocity perturbation values, and any 104 

point in the model space can be calculated from values of the surrounding eight nodes by 105 

linear interpolation (Zhao et al., 1992, 1994, 1997, 2009; 2002, 2013; Zhao and Lei, 106 

2004; Zhao and Ohtani, 2009;, Zhao, 2001, 2004). 107 

 108 

In this study, we collected data recorded by China seismic network from July 2007 to 109 

March 2014 which comprises 228 seismic stations in the study region (Fig. 1, Fig. 2). The 110 

371 seismic events were selected with epicentral distance ranging from 30°-111 

85°correspond to earthquake magnitude >6.0. P arrivals were correlated on the vertical 112 

component after bandpass filtering between 0.3 and 3 Hz. Our assembled data set 113 
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contains 42500 P-wave arrivals. Based on the distribution of the relative arrival time, we 114 

limited the relative arrival time of >-2s and <2s used to tomographic inversion (Fig. 3). To 115 

analysize this data set, we used the tomographic method of Zhao et al (1994). The three-116 

dimension grid nodes was set up. The lateral grid spacing is 1◦ ×1◦ and the vertical grid 117 

spacing are 50, 100, 200, 300, 400, 500, 600, 700 and 800 km respectively. After the 118 

crustal correction to remove the effect of lateral crustal heterogeneity (crustal correction 119 

depth: 50 km) (Jiang et al., 2015), the velocity perturbations from the one-dimensional 120 

iasp91 Earth model (Kennett and Engdahl, 1991) at each grid node was taken as 121 

unknown parameter. The LSQR algorithm (Paige and Saunders, 1982) was used to solve 122 

the large and sparse system of observation equations with damping and smoothing 123 

regularizations (Zhao, 2004). The optimal value of the damping is based on the trade-off 124 

curve between the RMS travel-time residuals and the norm of the model, after many 125 

tests, and eventually, 15 were adopted as damping parameter (Fig. 4). 126 

 127 

The results from tomographic inversion should be assessed along with resolution and 128 

error analyses. The procedure to evaluate the resolution of a tomographic result is to first 129 

calculate a set of travel time delays which result from tracing the actual rays through a 130 

synthetic test structure, followed by the inversion of the delays as though they are data, 131 

and finally comparing the synthetic inversion result with the initial structure (Zhao et al., 132 

1992). Following this method, the synthesized data were inverted to evalute whether the 133 

assigned checkerboard pattern could be recovered or not. Here, we designed the lateral 134 

grid spacing as 1◦ ×1◦ and the vertical grid spacings are 50, 100, 200, 300,  400,  500  135 
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600, 700 and 800 km. Positive and negative velocity perturbations of 5% were assigned 136 

to all the 3-D grid nodes. The results show that the resolution is generally high in most 137 

parts of the study area (Fig. 5), except for the marginal region and 50 and 800 km depth 138 

sections. We also carried out the checkboard test along west-east profiles (Fig. 1, Fig. 139 

6 ), all results show high resolution at all profile and the synthetic data can be recovered 140 

at main part, except for western part of the section, the north-south profiles also show 141 

high resolution at most part, except for the marginal region (Fig. 7). The results of the 142 

checkboard test demonstrated our data and calculation adequately meet with the 143 

required resolution for this study. 144 

 145 

3. Results 146 

 147 

The results from this study show large-scale high velocity perturbation at 50,100, 148 

200, and 300 km depth sections in the northeastern part of the study area or Yangtze 149 

block which reflects the lithospheric root of the Sichuan Basin (Fig. 8). This result is 150 

consistent with previous teleseismic P-wave tomographic studies (Yang et al., 2014; 151 

Huang et al., 2015; Li et al., 2006; Bao et al., 2009). A recent receiver function study 152 

indicates large-scale delamination at the central and southern parts of this area (He et 153 

al., 2014), which might have triggered large-scale mantle convection leading to the high 154 

velocity domain in this region. Therefore, tomographic images show a large-scale high 155 

velocity perturbation at 300 and 400km depth at the central part (Fig. 8, Hv1) which may 156 

be associated with the crustal and (or) lithospheric delamination. Huang et al. (2015) also 157 

defined a large-scale high velocity perturbation at 350 and 400 km depth, which is 158 
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consistent with our results. High velocity perturbations are also revealed at 500, 600 and 159 

700 km depth sections (most in the mantle transition zone) (Fig. 8, Hv2), which might 160 

connect with the crustal and (or) lithospheric delamination or vestiges of subduction slab 161 

of the Indian plate (Yang et al., 2014). In the southern part of the study area, large-scale 162 

low velocity perturbations are seen at 50, 100, 200 and 300 km depth section (Fig. 8 163 

Lv1). Furthermore, these low velocity perturbations broadly overlap at different depths, 164 

possibly indicating a connection with the upwelling mantle. Huang et al. (2015) and Yang 165 

et al. (2014) also defined a low velocity perturbation at 100-200 km depth, which is also 166 

consistent with our results. In the 700 and 800 km depth sections, there is an obvious low 167 

velocity perturbation in the southern part of the region, which might represent the vestige 168 

of the upwelling mantle. 169 

 170 

In the west-east direction profile (Fig. 9), the high velocity perturbation at the root of 171 

Sichuan basin can be clearly seen in Figs. 9a and b. The large-scale high velocity occurs 172 

in the upper mantle region around 26-28°, which is consistent with the results from 300 173 

and 400 km depth sections (Fig. 8), which further suggests large-scale delamination 174 

process beneath the Emeishan LIP area. Several discontinuous high velocity 175 

perturbations are seen in the mantle transition zone, possibly related to crustal and (or) 176 

lithospheric material delaminated into the mantle transition zone. Alternately, these 177 

features might also correspond to the vestiges of the subduction slab of the Indian plate. 178 

In Fig. 9d, there is a large-scale low velocity perturbation in the upper mantle (along the 179 

24°N), which reflect upwelling mantle originating from the mantle transition zone. Yang et 180 
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al. (2014) and Huang et al. (2015) also defined a low velocity perturbation or upwelling 181 

mantle almost at the same location (along the 25°N).  182 

 183 

In order to further evaluate our results, we took 4 profiles along the north-south 184 

direction (Fig. 10). In Fig. 10e, there is a low velocity perturbation or large-scale upwelling 185 

mantle, which is consistent with Lv1. In Fig 10f and h, there is a low velocity perturbation 186 

or upwelling mantle originating from the mantle transition zone. In Fig. 10g, the upwelling 187 

mantle may originate from the mantle transition zone, because the low velocity 188 

perturbation is very weak at the lower mantle part, which might also be due to the low 189 

resolution of the profile (Fig. 7). 190 

 191 

The tomographic image identified by this study shows an obvious low velocity 192 

perturbation in the upper mantle beneath the southern part of the study area, there are 193 

no vestiges of any upwelling mantle plume beneath the Emeishan LIP. In contrast, there 194 

are the low velocity perturbation in the upper mantle and mantle transition zone, we 195 

speculate that the low velocity perturbation in the southern part of the region (Fig. 8, Fig. 196 

9 and Fig. 10) might be associated with crustal and (or) lithospheric delamination. These 197 

vestiges are also identified within high resolution checkboard test (please see Fig. 5, Fig. 198 

6 and Fig. 7), confirming that our results are reliable. 199 

 200 

4. Discussion 201 

 202 
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4.1 The location of the Emeishan LIP formation 203 

 204 

The south China block docked with the Indochina Block on the southwest in the 205 

Triassic along the Ailaoshan-Song Ma suture, on the west along the Longmenshan Fault, 206 

and on the north with the North China Craton along the Qinling–Tongbai–Hong'an–Dabie–207 

Sulu orogenic belt (Li et al., 2002; Zhou and Zhu, 1993; Mao et al., 2013; Zheng et al., 208 

2013). The Emeishan LIP is considered to have formed in the Permian-Triassic (Song et 209 

al., 2013; Chung and Jahn, 1995), suggesting a close link with the tectonics associated 210 

with the block amalgamation. The LIP was broken up by the Red River Fault (Xiao et al., 211 

2004) and is now bounded by the Longmenshan fault (He et al., 2007). However, the ∼260-212 

Ma Emeishan LIP in SW China and northern Vietnam includes voluminous continental 213 

flood basalts that are believed to have formed from same upwelling mantle (Chung and 214 

Jahn, 1995; Xu et al., 2004; Zhou et al., 2006; Wang et al., 2007). Recent studies also 215 

suggested that tectonic lenses of the same basaltic sequence (Camthuy Formation) and 216 

associated rocks are present in northern Vietnam (Tien, 2000; Shi and Shen, 1998), and 217 

were displaced several hundred kilometers to the southeast by Oligo-Miocene sinistral 218 

motion along the Ailao Shan-Red River Fault (Ali et al., 2005), suggesting that the 219 

Emeishan LIP was formed after the closure of the south China block and the Indochina 220 

Block. Although the paleogeographic location of the region of the LIP is near the equator 221 

in the early Permian (Ali et al., 2005; Enkin et al., 1992), the Emeishan terrane arrived in 222 

the present location in the later Permian or early Triassic prior to the LIP formation. 223 

 224 

 Recent receiver function study also demonstrated a convective circulation system 225 
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between the lower crust and the upper mantle transition zone beneath the Emeishan area 226 

associated with the Emeishan LIP formation (He et al., 2014), which further suggests the 227 

formation of the Emeishan LIP at the present location. 228 

 229 

4.2 The mechanism of the Emeishan LIP formation 230 

 231 

Predictions based on numerical and fluid dynamic modelling show that mantle 232 

plumes originating from either the MTZ or the CMB would result in broad domal uplift 233 

(>1,000km wide, 500 to >1,000m high) preceding volcanism in LIPs (Peate and Bryan, 234 

2008; Campbell and Griffiths, 1990; Richards et al., 1989). However, the location and 235 

distribution of the voluminous mafic volcaniclastic deposits, pillow lavas and marine 236 

sediments in the Emeishan LIP do not confirm with the zonal definition of a broad uplifted 237 

dome (Peate and Bryan, 2008). Therefore, the relationship between dynamic uplift and 238 

plume-related process in the Emeishan LIP has remained equivocal (Peate and Bryan, 239 

2008; Sheth, 2007a; Ali et al., 2010; Shellnutt, 2014). 240 

 241 

The rise and impingement of mantle plumes on continental and oceanic lithospheric 242 

plates would lead to the formation of mafic/ultramafic lower crust (Pirajno, 2007). 243 

Although, some of the previous studies indicated a high velocity lower crust beneath the 244 

Emeishan LIP (Xu et al., 2007), suggesting mafic/ultramafic lower crust generated by 245 

lower crustal underplating or the upwelling mantle plume during later Permian (Shellnutt, 246 

2014; Zhong et al., 2009; Xu et al., 2004; Tang et al., 2015; Usuki et al., 2015). However, 247 

the dominantly felsic to intermediate lower crust in this area identified from receiver 248 

function analyses (He et al., 2014, 2009) do not favour any large-scale underplating in 249 
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the Emeishan LIP area (He et al., 2014; S.S. Sun et al., 2012). 250 

 251 

Alternate models consider that the LIP magmatism was triggered by decompression-252 

induced melting of upper mantle beneath zones of lithospheric extension or fractures 253 

(Uenzelmann-Neben, 2013) which does not require any upwelling mantle plume. Pre-254 

eruptive subsidence and asthenospheric flow into voids created by delamination of dense 255 

eclogitic lower crust and (or) lithosphere have been proposed by some workers (Anderson, 256 

2007; Hales et al., 2005), such as in the case of the Siberian trap basalts (Elkins-Tanton 257 

and Hager, 2000).  258 

  259 

Tomography studies have indicated a high velocity perturbation zone at 500 and 600 km 260 

depth section identified by this study and the earlier studies in the Emeishan LIP area 261 

(Ferris et al., 2003; Yang et al., 2014). This might link the cold material detached or 262 

delaminated from the lower crust and (or) lithosphere into the upper mantle leading to the 263 

velocity increase. 264 

 265 

The crustal and (or) lithospheric delamination can generate mantle upwelling and 266 

extensive volcanism (Vlaar et al., 1994; van Thienen et al., 2004), the scale and extent of 267 

which are related to the intensity of the delamination process. A large-scale lower crustal 268 

and (or) lithospheric delamination or sinking may get arrested at the 660 km discontinuity 269 

identified by this study, where crustal and lithospheric components would be melted 270 

(Lustrino, 2005) because the mantle transition zone (MTZ) is a potential water reservoir 271 
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in the Earth’s interior (Karato, 2011; Kuritani et al., 2011). Accumulation of subducted 272 

crustal debris, and delaminated crust and (or) lithosphere at the MTZ are speculated to 273 

give rise to ‘second continents’ on the bottom of the upper mantle (Kawai et al., 2013; 274 

Korenaga, 2004, Lustrino, 2005). The minerals in Earth’s mantle transition zone as ‘water 275 

tanks’ might trigger dehydration melting of vertically flowing mantle (Schmandt et al., 276 

2014). Because of their buoyancy, crustal and (or) lithospheric melts rise up as plume-277 

like upwelling instead of being dragged down to the convecting lower mantle (Lustrino, 278 

2005). Thus, lower crustal delamination and mantle inflow are considered to set the ideal 279 

scene for plume-like upwelling from the MTZ (He et al., 2014). Eventually, the plume-like 280 

upwelling resulted in the Emeishan LIP formation.  281 

 282 

Meanwhile, removal of the lower crust and (or) lithosphere allows mantle to rise to 283 

shallower depths leading to decompression melting reflected as low velocity 284 

perturbations (Schott and Schmeling, 1998; Elkins-Tanton and Hager, 2000; Elkins-285 

Tanton, 2005). Accordingly, some low velocity perturbations identified by this study may 286 

be the vestige of the mantle upwelling. 287 

 288 

Conclusions 289 

 290 

The tectonic framework of Emeishan LIP is characterized by the Longmenshan 291 

thrust fault in the northwest and the Ailaoshan-Red River strike slip fault in the southwest. 292 

It is possible that the assembly of Yangtze block with another crustal block in the Late 293 

Permian and Early Triassic might have led to crustal thickening and large-scale 294 
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delamination of the lower crust and (or) lithosphere. The delamination resulted in the 295 

upwelling asthenosphere and generation of crustal melts that triggered plume-like 296 

upwelling and Emeishan LIP formation, with no evidence for any large plume rising from 297 

the CMB beneath the Emeishan LIP.  298 
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 605 

Fig. 1. Tectonic framework, distribution of seismic stations (black triangle) and the west-606 

east and north-south direction profiles in the Emeishan LIP area. 1: Nujiang fault, 2: 607 

Shaoxing-Jiangshan-Pingxiang fault, 3: Langcangjiang fault, 4: Nandinghe fault, 5: Weixi-608 

Qiaohou fault, 6: Honghe fault, 7: Yangjiang-Xiaojinhe fault, 8: Xianshuihe fault, 9: 609 

Longmenshan fault, 10: Anninghe-Zhemuhe fault, 11: Xiaojiang fault, 12: Jiujiang-Shitai 610 

buried fault, black triangle: seismic station. 611 
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 612 

Fig. 2. Seismic events used in this tomographic study. The 371 events with epicenter 613 

distance range from 30  to 85  for each station-event pair.  614 

 615 

 616 

Fig. 3 Distribution of relative arrival time. We limited to >-2s and <2s for the tomographic 617 

inversion. 618 

Solid Earth Discuss., doi:10.5194/se-2017-17, 2017
Manuscript under review for journal Solid Earth
Discussion started: 22 March 2017
c© Author(s) 2017. CC-BY 3.0 License.



P a g e  | 30 

 

30 
 

 619 

Fig. 4 The damping parameter (15) taken to invert final solution model (red circle) for 620 

CRT and synthethic tests after a series inversion test. RMS travel time residual is about 621 

0.41 s. 622 
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 623 

Fig.5 Checkboard resolution test at 50, 100, 200, 300, 400, 500, 600, 700 and 800 km 624 

depth sections relative to IASP91 1D velocity model (Kennett and Engdahl, 1991). The 625 

model was run using the same raypaths as the main inversion, with the same damping 626 

parameter. 627 

 628 
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 629 

 630 

Fig. 6 Checkboard resolution test along the west-east direction profiles (a, b, c, and d is 631 

latitude 24〫N, 26〫N, 28〫N and 30〫N direction, respectively) (see Fig. 1 for profile 632 

location). 633 

 634 
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 635 

Fig. 7 Checkboard resolution test along the north-south direction profiles (e, f, g and h 636 

are sections along longitude 102〫E, 104〫E, 106〫E and 108〫E, respectively) (see 637 

Fig. 1 for profile location). 638 
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 639 

Fig. 8 P-wave velocity perturbation at 50, 100, 200, 300, 400, 500, 600, 700 and 800 640 

km depth sections relative to IASP91 1D velocity model (Kennett and Engdahl, 1991). 641 

Portions of the model where the recovery of the starting model in the CRT was below 10% 642 

are not shown (see Fig. 5). 643 
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 644 

 645 

Fig. 9 P-wave velocity perturbation profiles along the west-east direction (a, b, c, and 646 

d is latitude 24〫N, 26〫N, 28〫N and 30〫N direction, respectively) (see Fig. 1 for profile 647 

location). Portions of the model where the recovery of the starting model in the CRT was 648 

below 10% are not shown (see Fig. 6). 649 
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 651 

Fig. 10 P-wave perturbation profiles along the north-south direction (e, f, g and h are 652 

sections along longitude 102〫E, 104〫E, 106〫E and 108〫E, respectively) (see Fig. 1 653 

for profile location). Portions of the model where the recovery of the starting model in the 654 

CRT was below 10% are not shown (see Fig. 7). 655 

 656 

 657 
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